02-26-2024, 02:28 PM

Definition

The Dedekind Sum is defined as follows:

Let P and Q be relatively prime integers, that is GCD(P, Q) = 1.

Then S is the Dedekind sum as:

S = Σ( ((I ÷ Q)) × ((P × I ÷ Q)), for I=1 to Q)

The double parenthesis around the terms I ÷ Q and P × I ÷ Q signify a custom function:

(( X )) =

0, if X is an integer

X – FLOOR(X) – 1/2, if X is not an integer

If X is positive, X – INTG(X) – 1/2

HP Prime: DEDEKIND

P = 2, Q = 17: 0.4705882353

P =14, Q = 57: -0.8187134503

Sources

Shipp, R. Dale. “Table of Dedekind Sums” Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics Vol. 69B, No 4, October-December 1965 https://nvlpubs.nist.gov/nistpubs/jres/6...59_A1b.pdf

Retrieved February 21, 2024

Weisstein, Eric W. "Dedekind Sum." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DedekindSum.html

Retrieved February 18, 2024

The Dedekind Sum is defined as follows:

Let P and Q be relatively prime integers, that is GCD(P, Q) = 1.

Then S is the Dedekind sum as:

S = Σ( ((I ÷ Q)) × ((P × I ÷ Q)), for I=1 to Q)

The double parenthesis around the terms I ÷ Q and P × I ÷ Q signify a custom function:

(( X )) =

0, if X is an integer

X – FLOOR(X) – 1/2, if X is not an integer

If X is positive, X – INTG(X) – 1/2

HP Prime: DEDEKIND

Code:

`EXPORT DEDEKIND(p,q)`

BEGIN

// 2024-02-21 EWS

LOCAL s,i,a,b;

// Calculation

IF CAS.gcd(p,q)==1 THEN

s:=0;

FOR i FROM 1 TO q DO

a:=i/q;

IF FP(a)==0 THEN

a:=0;

ELSE

a:=a-FLOOR(a)-0.5;

END;

b:=p*i/q;

IF FP(b)==0 THEN

b:=0;

ELSE

b:=b-FLOOR(b)-0.5;

END;

s:=s+a*b;

END;

RETURN s;

ELSE

RETURN "p and q are not relatively prime.";

END;

END;

P = 2, Q = 17: 0.4705882353

P =14, Q = 57: -0.8187134503

Sources

Shipp, R. Dale. “Table of Dedekind Sums” Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics Vol. 69B, No 4, October-December 1965 https://nvlpubs.nist.gov/nistpubs/jres/6...59_A1b.pdf

Retrieved February 21, 2024

Weisstein, Eric W. "Dedekind Sum." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DedekindSum.html

Retrieved February 18, 2024