11-21-2022, 10:22 AM

This HP Prime program demonstrates how to interact with the kozsak subroutine which converts between osculating and mean classical orbital elements using an algorithm due to C. Uphoff (JPL IOM 312/85.2-927).

Typical classical orbital elements are "hard-wired" in the code as follows

// initial osculating classical orbital elements

// semimajor axis (kilometers)

oe_osc1(1) := 8000.0;

// orbital eccentricity (non-dimensional)

oe_osc1(2) := 0.015;

// orbital inclination (radians)

oe_osc1(3) := 28.5 * dtr;

// right ascension of the ascending node (radians)

oe_osc1(4) := 100.0 * dtr;

// argument of perigee (radians)

oe_osc1(5) := 270.0 * dtr;

// true anomaly (radians)

oe_osc1(6) := 45.0 * dtr;

The source code, a PDF copy of Uphoff's memo and example tif files can be downloaded from

https://www.dropbox.com/s/4zkzeh3176kscx...e.zip?dl=0

Typical classical orbital elements are "hard-wired" in the code as follows

// initial osculating classical orbital elements

// semimajor axis (kilometers)

oe_osc1(1) := 8000.0;

// orbital eccentricity (non-dimensional)

oe_osc1(2) := 0.015;

// orbital inclination (radians)

oe_osc1(3) := 28.5 * dtr;

// right ascension of the ascending node (radians)

oe_osc1(4) := 100.0 * dtr;

// argument of perigee (radians)

oe_osc1(5) := 270.0 * dtr;

// true anomaly (radians)

oe_osc1(6) := 45.0 * dtr;

The source code, a PDF copy of Uphoff's memo and example tif files can be downloaded from

https://www.dropbox.com/s/4zkzeh3176kscx...e.zip?dl=0