# HP Forums

Full Version: (Casio Micropython/Numworks Python): Calculus
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
The following scripts creates the user functions for calculus:

f(x): define your function in terms of x here. This needs to be loaded into the script before running it. Each of the functions that follow will use f(x). You can call f(x) to evaluate the function at any value.

deriv(x): The approximate derivative at point x. The Five Stencil approximation is used.

sigma(a,b): Calculate the sum (Σ f(x)) from x = a to x = b.

integral(a,b,n): Calculates the definite integral ( ∫ f(x) dx) from x = a to x = b. The Simpson's rule is used with n divisions (n needs to be even)

solve(x0): Uses Newton's Rule to find roots for f(x).

Example

f(x) = -2x*^2 + 3x + 5
In Python: -2*x**2+3*x+5

f(0): 5
f(10): -165
f(-10): -225

deriv(10): -37.00004450971999

Σ f(x): x = 1 to 25: sigma(1,25): -8780

∫ f(x) dx: x = -3 to 1, n = 20: integral(-3,1,20): -10.666666666667

Solve f(x)=0, initial condition x0 = 2.5: solve(5): 2.5

Python Script: calculus.py

from math import *

Code:
```# 2020-04-15 EWS # define f(x) here def f(x):   return -2*x**2+3*x+5    # derivative def deriv(x):   # uses f(x), 5 stencil   # h is tolerance   h=1e-10   d=(12*h)**-1*(f(x-2*h)-8*f(x-h)+8*f(x+h)-f(x+2*h))   return d # sum/sigma def sigma(a,b):   t=0   n=b-a   for i in range(n):     t=t+f(i+1)   return t # integral by simpsons rule def integral(a,b,n):   t=f(a)+f(b)   h=(b-a)/n   for i in range(n-1):     w=(i+1)/2     if (w-int(w))==0:       t=t+2*f(a+(i+1)*h)     else:       t=t+4*f(a+(i+1)*h)   t=t*h/3   return t # solver def solve(x0):   tol=1e-14   x1=x0-f(x0)/deriv(x0)   while abs(x1-x0)>tol:     x0=x1     x1=x0-f(x0)/deriv(x0)   return x1```
Reference URL's
• HP Forums: https://www.hpmuseum.org/forum/index.php
• :