03-14-2020, 11:00 AM
An excerpt from A Programmable Calculator Applications Notebook for Practicing Planners, ROBERT M. ERICSON (Masters Thesis, community planning), University of Rhode Island, 1982
"INTRODUCTION
A practicing planner needs the capability to solve quantitative problems. No planning curriculum can prepare its students for every kind of quantitative problem they can conceivably encounter. In my own field, renewable energy planning,. some of the most important problems have emerged within the past few years: shadow calculations for solar access, tax incentive calculations for small hydroelectric site redevelopment, etc. Planners in this field are turning to powerful programmable calculator/printer systems as a means of coping.
Electronics engineers have been using programmable calculators since these tools appeared in 1977. I first began using the TI-59/PC-100C system in late 1979, while working on passive solar design problems with architects at the Northeast Solar Energy Center. Since then I have done thousands of runs for a wide variety of problems, mostly energy-related. It has become increasingly apparent that most of the advantages of the system can be transferred to other kinds of public planning.
Given an introductory notebook, most students should be able to acquire competence in calculator programming and applications more efficiently than I did. And so I decided to write such a notebook.
Quantitative problem solving with the TI-59/PC-100C is a blend of many things, from mathematical theory to keeping your fingerprints off the magnetic program cards. Writing a notebook that respects the utility of brand-name and housekeeping information is not accepted academic practice in graduate schools, nor is the required double-spaced format appropriate for communicating this kind of information in the most efficient way. I have entered this project with some trepidation, despite my complete confidence in the hardware/software system.
…
Finally, the programmable calculator has been underestimated because of its small size, even though its speed and capacity exceed that of a central processing unit sold by IBM for a quarter million dollars in 1960. In 1980, when the federal government required utilities to provide on-site energy audits for their residential customers, I worked with a small group that designed a complying audit procedure. It required more than a hundred data inputs, more than a thousand calculations, and a complete discussion of results on-site. While other states set up central computer systems to be accessed by portable modem terminals, we developed an incredibly compressed TI-59 program. The Rhode Island utilities' non-profit auditing firm uses twenty calculator/printer systems for more than 10,000 audits per year. These systems save some $300,000 per year in computer programming, leasing and operations costs. The good feeling of having worked on that project has sustained me through more than a few disappointing days since then."
BEST!
SlideRule
Alternate URL
"INTRODUCTION
A practicing planner needs the capability to solve quantitative problems. No planning curriculum can prepare its students for every kind of quantitative problem they can conceivably encounter. In my own field, renewable energy planning,. some of the most important problems have emerged within the past few years: shadow calculations for solar access, tax incentive calculations for small hydroelectric site redevelopment, etc. Planners in this field are turning to powerful programmable calculator/printer systems as a means of coping.
Electronics engineers have been using programmable calculators since these tools appeared in 1977. I first began using the TI-59/PC-100C system in late 1979, while working on passive solar design problems with architects at the Northeast Solar Energy Center. Since then I have done thousands of runs for a wide variety of problems, mostly energy-related. It has become increasingly apparent that most of the advantages of the system can be transferred to other kinds of public planning.
Given an introductory notebook, most students should be able to acquire competence in calculator programming and applications more efficiently than I did. And so I decided to write such a notebook.
Quantitative problem solving with the TI-59/PC-100C is a blend of many things, from mathematical theory to keeping your fingerprints off the magnetic program cards. Writing a notebook that respects the utility of brand-name and housekeeping information is not accepted academic practice in graduate schools, nor is the required double-spaced format appropriate for communicating this kind of information in the most efficient way. I have entered this project with some trepidation, despite my complete confidence in the hardware/software system.
…
Finally, the programmable calculator has been underestimated because of its small size, even though its speed and capacity exceed that of a central processing unit sold by IBM for a quarter million dollars in 1960. In 1980, when the federal government required utilities to provide on-site energy audits for their residential customers, I worked with a small group that designed a complying audit procedure. It required more than a hundred data inputs, more than a thousand calculations, and a complete discussion of results on-site. While other states set up central computer systems to be accessed by portable modem terminals, we developed an incredibly compressed TI-59 program. The Rhode Island utilities' non-profit auditing firm uses twenty calculator/printer systems for more than 10,000 audits per year. These systems save some $300,000 per year in computer programming, leasing and operations costs. The good feeling of having worked on that project has sustained me through more than a few disappointing days since then."
BEST!
SlideRule
Alternate URL