HP Forums

Full Version: (34C) The Ming Mystery
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Here is a game to guess a number of five digits (among nine) with your HP-34C.

How can I play it?
There are two ways for playing this Mystère Ming game:
- You prefer an easy game with a lot of time to read the relevance of your guess and to think to your next answer: press A;
- You want to try the hardest level with only one second to read the answer of the 34C to your guess: press B.

Once you keyed in the program, press A or B in Run mode.
At first, your calculator will ask you for a seed, displaying 0.335 (or SEE.D by reading upside down). Enter any number strictly superior to 1, then press [R/S]. Next games won't require any other seed.

The calculator will choose five digits, maybe will repeat some, and then will display 0,00000, waiting for your first guess. Enter five digits (not zero) and press [R/S].

Your 34C will display after a while... its answer: your guess will appear on the left, and the decimals will indicate:
- a correct guess for a digit at the right place (1);
- a correct guess for a digit at a wrong place (2);
- a wrong guess (0).

In easy mode (A), take your time to remember what you had played and carefully analyse the new situation.
In hard mode (B), the display is cleared! You'll have to remember your guess and the answer of the machine.

Example

12.345,10202 You lucky, "1" is correctly placed, "3" and "5" are parts of the solution.
16.573,10101 What a chance!
18.593,10111 Only one more to find...
19.593,12111 No, not this one.
15.593,11111 Yes!

At the end of the game, the result is displayed alternatively with the number of your guesses. Congratulations!

Note: if you want to double the pause of the game in B mode, just add these two instructions (F? 1 PSE) at step 056.

Program:
(part I)
Code:

001 LBL A    011 x#0?     021 FRAC     031 *        041 GTO 7    051 STO I    061 R/S      071 INT      081 LBL 4    091 1
002 SF 0     012 GTO 7    022 10^x     032 INT      042 GTO 6    052 FIX 5    062 STO 0    072 +        082 RCL(i)   092 0
003 CF 1     013 FIX 3    023 FRAC     033 x#0?     043 LBL 7    053 RCL 0    063 LBL 5    073 STO(i)   083 FRAC     093 /
004 GTO 7    014 .        024 STO 6    034 GTO 8    044 LSTx     054 F? 0     064 1        074 R↓       084 RCL 6    094 x=y?
005 LBL B    015 3        025 5        035 LSTx     045 FRAC     055 R/S      065 0        075 INT      085 x↔I      095 GSB 1
006 SF 1     016 3        026 STO I    036 FRAC     046 GTO 9    056 F? 1     066 /        076 DSE      086 STO 6    096 R↓
007 CF 0     017 5        027 R↓       037 GTO 9    047 LBL 6    057 PSE      067 FRAC     077 GTO 5    087 R↓       097 DSE
008 LBL 7    018 R/S      028 LBL 9    038 LBL 8    048 1        058 F? 1     068 LSTx     078 5        088 LBL 3    098 GTO 3
009 RCL 0    019 LBL 7    029 1        039 STO(i)   049 STO+7    059 CLx      069 x↔y      079 STO I    089 RCL(i)   099 CLx
010 CLRG     020 LN       030 0        040 DSE      050 5        060 F? 1     070 RCL(i)   080 STO 6    090 INT      100 F? 2

(part II)
Code:

101 GSB 0    111 5        121 1        131 FIX 0    141 R↓       151 RTN  
102 STO+0    112 STO 6    122 1        132 RCL 7    142 RTN             
103 CF 2     113 GTO 4    123 x=y?     133 PSE      143 LBL 0           
104 CF 3     114 LBL 7    124 GTO 2    134 GTO 2    144 RCL 6           
105 RCL 6    115 RCL 0    125 LSTx     135 LBL 1    145 CHS             
106 1        116 FRAC     126 GTO 6    136 SF 2     146 10^x            
107 -        117 .        127 LBL 2    137 RCL I    147 F? 3            
108 x=0?     118 1        128 FIX 5    138 RCL 6    148 RTN              
109 GTO 7    119 1        129 RCL 0    139 x=y?     149 2              
110 STO I    120 1        130 PSE      140 SF 3     150 *                 |       151 steps, 7+1 registers : 207 bytes         |

This program was first published there in 2014 (p. 23). You can find some explanations in this article.
Reference URL's