10-31-2018, 07:25 PM

Hello, users and developer group of the famous hp-prime calculator

Sorry for my technical english.

I report the problem

Define 2 * X - 3 * Y <= 6 for example in V2 variable and calculator in Spanish language

When pressing the [num] the table of values informs TRUE but in Spanish it is "Verdadero" and FALSE "Falso" in previous versions this did not happen.

Now You can also define the functions from CAS mode

V2(X,Y) := (2*X-3*Y)≤6 [Enter] returns (X,Y)->(2*X-3*Y)≤6 // ok

right(V2) [Enter](2*X-3*Y)≤6 // ok

then we want to see the solutions

solve(right(V2),X) [Enter] returns {X≤((3*Y+6)/2)} // ok

solve(right(V2),Y) [Enter] returns {Y≥((2*X-6)/3)} // ok

solve(right(V2),X,'=') [Enter] failure [[]]

solve(right(V2),Y,'=') [Enter] failure [[]]

Another case

V1(X,Y) := (X²/3 - Y²/5 = 1) [Enter] returns (X,Y)->(((X^2/3)-(Y^2/5))==1) // Bug, since == implies comparison)

in previous versions returned (X,Y)->(((X^2/3)-(Y^2/5))=1)

right(V1) [Enter] returns 0 -> false // Bug because it evaluates the comparison (((X^2/3)-(Y^2/5)) == 1 is false

in the last Versión: 2.1.14181 (2018 10 16) The problem still persists.

V1(X,Y) := (X²/3 - Y²/5 = 1) [Enter] returns 0 (synonyms of false)

solve(right(V1),Y,'=') [Enter] returns a previous message "Warning, argument is not an equation, solving V1=00" then [[]]

solve(right(V1),Y,) [Enter] returns a previous message "Warning, argument is not an equation, solving ((X²/3-Y²/5)==1 )=0" then {(-1/3)*sqrt(15)*sqrt(X^2-3), (1/3)*sqrt(15)*sqrt(X^2-3)}

Thanks

JaiMeza

Sorry for my technical english.

I report the problem

Define 2 * X - 3 * Y <= 6 for example in V2 variable and calculator in Spanish language

When pressing the [num] the table of values informs TRUE but in Spanish it is "Verdadero" and FALSE "Falso" in previous versions this did not happen.

Now You can also define the functions from CAS mode

V2(X,Y) := (2*X-3*Y)≤6 [Enter] returns (X,Y)->(2*X-3*Y)≤6 // ok

right(V2) [Enter](2*X-3*Y)≤6 // ok

then we want to see the solutions

solve(right(V2),X) [Enter] returns {X≤((3*Y+6)/2)} // ok

solve(right(V2),Y) [Enter] returns {Y≥((2*X-6)/3)} // ok

solve(right(V2),X,'=') [Enter] failure [[]]

solve(right(V2),Y,'=') [Enter] failure [[]]

Another case

V1(X,Y) := (X²/3 - Y²/5 = 1) [Enter] returns (X,Y)->(((X^2/3)-(Y^2/5))==1) // Bug, since == implies comparison)

in previous versions returned (X,Y)->(((X^2/3)-(Y^2/5))=1)

right(V1) [Enter] returns 0 -> false // Bug because it evaluates the comparison (((X^2/3)-(Y^2/5)) == 1 is false

in the last Versión: 2.1.14181 (2018 10 16) The problem still persists.

V1(X,Y) := (X²/3 - Y²/5 = 1) [Enter] returns 0 (synonyms of false)

solve(right(V1),Y,'=') [Enter] returns a previous message "Warning, argument is not an equation, solving V1=00" then [[]]

solve(right(V1),Y,) [Enter] returns a previous message "Warning, argument is not an equation, solving ((X²/3-Y²/5)==1 )=0" then {(-1/3)*sqrt(15)*sqrt(X^2-3), (1/3)*sqrt(15)*sqrt(X^2-3)}

Thanks

JaiMeza