04-22-2018, 08:39 PM

The programme MFUN applies a function to matrix entered from the input line, returning the answer in Ans.

The desired function should be stored in the programme FNC & take S1 as its argument.

eg To find the natural log of a matrix enter the programme FNC thus:

If you enter the matrix

[[.1,.2,.7]

[.2,.5,.3]

[.4,.6,.3]]

MFUN returns

[[(-1.08299683723,1.64723871982),(1.31662026735,1.38974446983),(-.015353548285,-2.47915087845)],[(.421744560769,-3.15309862063E-2),(-1.25370018315,-2.66021027682E-2),(.692275221592,.04745521776)],[(.246905317147,-1.0105789431),(.787966638792,-.852606535171),(-.720910656897,1.52095603654)]]

in Ans.

As a check if FNC is then changed to

FNC

e^S1:

MFUN returns

[[(.1,-3.62115808644E-13),(.2,-9.29185821507E-13),(.7,4.83742749326E-13)],[(.200000000001,2.19158416549E-13),(.500000000001,-1.41370518606E-13),(.300000000002,-9.654916805E-14)],[(.400000000001,2.74516025436E-13),(.6,-5.57575448933E-13),(.300000000001,3.0309250954E-14)]]

On inspection all the imaginary parts are near zero & real parts are near the original values.

NB The values above are for 40gs, 40G may return slightly different values.

Here the programme:

The desired function should be stored in the programme FNC & take S1 as its argument.

eg To find the natural log of a matrix enter the programme FNC thus:

Code:

`FNC`

LN(S1):

[[.1,.2,.7]

[.2,.5,.3]

[.4,.6,.3]]

MFUN returns

[[(-1.08299683723,1.64723871982),(1.31662026735,1.38974446983),(-.015353548285,-2.47915087845)],[(.421744560769,-3.15309862063E-2),(-1.25370018315,-2.66021027682E-2),(.692275221592,.04745521776)],[(.246905317147,-1.0105789431),(.787966638792,-.852606535171),(-.720910656897,1.52095603654)]]

in Ans.

As a check if FNC is then changed to

FNC

e^S1:

MFUN returns

[[(.1,-3.62115808644E-13),(.2,-9.29185821507E-13),(.7,4.83742749326E-13)],[(.200000000001,2.19158416549E-13),(.500000000001,-1.41370518606E-13),(.300000000002,-9.654916805E-14)],[(.400000000001,2.74516025436E-13),(.6,-5.57575448933E-13),(.300000000001,3.0309250954E-14)]]

On inspection all the imaginary parts are near zero & real parts are near the original values.

NB The values above are for 40gs, 40G may return slightly different values.

Here the programme:

Code:

`MFUN`

Ans►M0:

RUN FNC:

XNUM(DIAGMAP(M0,Ans)):