Post Reply 
(HP71B) Eigenvalues of Symmetric Real Matrix
11-26-2023, 05:16 PM
Post: #1
(HP71B) Eigenvalues of Symmetric Real Matrix
Algorithm from HP15C Advanced Function Handbook, page 125
This version returned both eigenvectors and eigenvalues of symmetric real matrix

10 DESTROY ALL @ OPTION BASE 1 @ INPUT "N=";N
20 DIM A(N,N),B(N,N),L(N,N),Q(N,N),I0(N,N) @ MAT I0=IDN @ MAT Q=I0
30 MAT INPUT A @ MAT L=TRN(A) @ MAT A=A+L @ MAT A=(.5)*A @ MAT L=A
40 DEF FNF(N,D)=N/(D+(1-2*(D<0))*SQRT(N*N+D*D)) ! = tan(atan(N/D)/2)
100 MAT B=ZER
110 FOR I=2 to N @ FOR J=1 to I-1
120 X=L(I,J) @ IF X THEN B(I,J)=FNF(FNF(2*X,L(I,I)-L(J,J)),1)
130 NEXT J @ NEXT I
140 MAT L=TRN(B) @ MAT B=B-L @ DISP "FNORM(B)=";FNORM(B)
150 MAT L=B+I0 @ MAT L=INV(L) @ MAT L=L+L @ MAT L=L-I0 @ MAT Q=Q*L
160 DISP "Q=" @ MAT DISP Q
170 MAT L=TRN(Q) @ MAT L=L*A @ MAT L=L*Q
180 DISP "L=" @ MAT DISP L

>run
N=3
A(1,1)? 0,1,2
A(2,1)? 1,2,3
A(3,1)? 2,3,4
Code:
FNORM(B)= .605552349352
Q=
 .8662568603          .227657549016        .444714619016
-.444714619012        .75699314672         .478738220168
-.227657549018       -.612481359872        .75699314673
L=
-.349003969447       -.425695598709       -1.12609254611
-.425695598709       -.348327850394       -4.47666317212E-2
-1.12609254611       -4.47666317247E-2     6.69733181992
>run 100
FNORM(B)= .595643959403
Q=
 .824769255982       -.469983482558        .314437912022
 .285388154078        .826016169657        .486056466843
-.488169310695       -.311147575236        .815400460218
L=
-.859525935837        9.56986605065E-2     .200156808749
 9.56986605065E-2     1.82880814699E-2     .42420712414
 .200156808747        .424207124136        6.84123785436
>run 100
FNORM(B)= 8.95738317424E-2
Q=
 .86332901543        -.398599604012        .309485648795
 .183632804446        .819374127488        .543051592685
-.470044683262       -.412000479214        .78058542189
L=
-.872825507534       -9.30648141545E-3    -2.14243725402E-2
-9.30648141545E-3    -8.11920389207E-5     1.09063583269E-2
-2.14243725373E-2     .010906358327        6.87290669953
>run 100
FNORM(B)= 7.86910670518E-3
Q=
 .859879422537       -.408274692867        .306462320485
 .193856724533        .816499388716        .543827471319
-.472257291179       -.408216270356        .78123781753
L=
-.872983344667        3.2546038359E-5      5.1700251917E-5
 3.2546038358E-5      1.1264547796E-9      1.26811006234E-4
 5.170025078E-5       1.2681100214E-4      6.87298334337
>run 100
FNORM(B)= 2.97899107959E-5
Q=
 .859892597624       -.408248289526        .30646052708
 .193822654531        .816496581206        .54384383001
-.472247286024       -.408248290825        .781227133338
L=
-.872983346221       -8.99996E-10         -2.063351E-9
-8.99996266439E-10   -7.5924E-19           1.07648489092E-9
-2.05974E-9           1.07239E-9           6.87298334594
>run 100
FNORM(B)= 7.60886994417E-10
Q=
 .859892597285       -.40824829046         .306460526788
 .193822655517        .816496580921        .543843830086
-.472247286237       -.40824829046         .7812271334
L=
-.872983346221       -1.69E-13            -3.663E-12
-1.69203950392E-13    2.E-24               3.73782958716E-12
 1.66E-12             3.73E-12             6.87298334595

QT A Q = L      → A = Q L QT

Werner recently PM me on how this work, but I have no clue.
Anyone knows how it work, or reference (besides AFH) to where algorithm comes from?
Find all posts by this user
Quote this message in a reply
11-26-2023, 07:20 PM
Post: #2
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
(11-26-2023 05:16 PM)Albert Chan Wrote:  Anyone knows how it work, or reference (besides AFH) to where algorithm comes from?

It looks like Jacobi eigenvalue algorithm to me:
Quote:Set this equal to 0, and rearrange:

\(
\tan(2\theta) = \frac{2 S_{ij}}{S_{jj} - S_{ii}}
\)

Or maybe a variant of it.
Find all posts by this user
Quote this message in a reply
11-26-2023, 07:41 PM
Post: #3
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
(11-26-2023 07:20 PM)Thomas Klemm Wrote:  It looks like Jacobi eigenvalue algorithm to me:
Quote:Set this equal to 0, and rearrange:

\(
\tan(2\theta) = \frac{2 S_{ij}}{S_{jj} - S_{ii}}
\)

Or maybe a variant of it.

Yes, some Jacobi variant, because Bij entries is tan(θ/2). Question is why tan(θ/2) work.
Find all posts by this user
Quote this message in a reply
11-26-2023, 07:44 PM (This post was last modified: 11-26-2023 07:45 PM by Werner.)
Post: #4
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
No, it isn’t Jacobi.
It looks a bit like it, but it transforms the whole matrix in one go, slowly (but ever faster, and ultimately quadratically) converging to a diagonal matrix.
I understand the Cayley transform Q=(I-B)*inv(I+B), but not why and how the skew-symmetric matrix B would make Q an estimate for the eigenvectors (and not eigen*values* as written on pg 149 of the AFH, a typo), and why it would converge at all.
Jacobi itself is simple, just setting a single off-diagonal element to zero. The resulting formula is similar, but not the same -Wink

Cheers, Werner

41CV†,42S,48GX,49G,DM42,DM41X,17BII,15CE,DM15L,12C,16CE
Find all posts by this user
Quote this message in a reply
11-26-2023, 09:26 PM (This post was last modified: 11-29-2023 12:13 PM by Albert Chan.)
Post: #5
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
HP71B, version 2

1. Suggested by Werner, assume user inputed symmetric square matrix. Remove code: A=(A+AT)/2

2. Bij = tan(θ/2) replace with tan(θ)/2, (|θ|≤pi/4), which use 1 sqrt, instead of 2
This has a slight effect to convergence rate, but likely not noticeable.

For OP example, it converged slightly better.

Cas> float(eigenvals([[0,1,2],[1,2,3],[2,3,4]])) /* for reference */
[0., 6.87298334621, −0.872983346207]

This is 6th iteration, with old Bij = tan(θ/2)
Code:
FNORM(B)= 7.60886994417E-10
Q=
 .859892597285       -.40824829046         .306460526788
 .193822655517        .816496580921        .543843830086
-.472247286237       -.40824829046         .7812271334
L=
-.872983346221       -1.69E-13            -3.663E-12
-1.69203950392E-13    2.E-24               3.73782958716E-12
 1.66E-12             3.73E-12             6.87298334595

This is 6th iteration, with new Bij = tan(θ)/2
Code:
FNORM(B)= 8.7618796429E-11
Q=
 .408248290464        .859892597282        .306460526793
-.816496580928        .193822655521        .543843830107
 .408248290464       -.472247286237        .78122713341
L=
 0                    0                    0
-1.E-15              -.872983346218        1.786E-12
 0                    3.53E-12             6.87298334624

3. Q correction:

I = (I+B)-1 (I+B)
2 (I+B)-1 - I = (I+B)-1 - (I+B)-1 B = (I+B)-1 (I-B)

HP71-MathPac-suppl_manual.pdf Wrote:MAT X=INV(A)*B directly computes the solution of the matrix equation A X=B instead of
inverting A then multiplying by B

RHS cost the same as matrix inverse. (although in this case, LHS is cheap to compute too)

4. Combine "MAT L=TRN(Q) @ MAT L=L*A" to MAT L=TRN(Q)*A

10 DESTROY ALL @ OPTION BASE 1 @ INPUT "N=";N
20 DIM A(N,N),B(N,N),L(N,N),Q(N,N),I0(N,N) @ MAT I0=IDN @ MAT Q=I0
30 MAT INPUT A @ MAT L=A
40 DEF FNF(N,D)=N/(D+(1-2*(D<0))*SQRT(N*N+D*D)) ! = tan(atan(N/D)/2)
100 MAT B=ZER
110 FOR I=2 to N @ FOR J=1 to I-1
120 X=L(I,J) @ IF X THEN B(I,J)=FNF(2*X,L(I,I)-L(J,J))*.5
130 NEXT J @ NEXT I
140 MAT L=TRN(B) @ MAT B=B-L @ DISP "FNORM(B)=";FNORM(B)
150 MAT L=I0-B @ MAT B=I0+B @ MAT L=INV(B)*L @ MAT Q=Q*L
160 DISP "Q=" @ MAT DISP Q
170 MAT L=TRN(Q)*A @ MAT L=L*Q
180 DISP "L=" @ MAT DISP L

Comment: this patch make bij closer to tan(θ/2), with little cost, if desired.

Cas> series(tan(x/2),polynom)      → 1/2*x+1/24*x^3+1/240*x^5
Cas> series(tan(x)/2,polynom)      → 1/2*x+1/6*x^3+1/15*x^5

>120 X=L(I,J) @ IF X THEN X=FNF(2*X,L(I,I)-L(J,J))*.5 @ B(I,J)=X-X*X*X
Find all posts by this user
Quote this message in a reply
11-26-2023, 10:05 PM
Post: #6
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
(11-26-2023 05:16 PM)Albert Chan Wrote:  40 DEF FNF(N,D)=N/(D+(1-2*(D<0))*SQRT(N*N+D*D)) ! = tan(atan(N/D)/2)

I might have jumped a step. The reason FNF = tan(atan(N/D)/2) is based on this identity.
(05-31-2021 09:51 PM)Albert Chan Wrote:  \(\displaystyle\arctan(x) = 2\arctan\left( {x \over \sqrt{1+x^2}+1} \right)\)

x = N/D, but we don't want division by 0, so we scale D away.

HP71B has signed zero, I was hoping SGN(0) = 1, but that returned 0.
Interestingly, SGN(-0) returned -0

That's why the (1-2*(D<0)) factor, to handle D=0 case --> 1-2*0 = 1
Another way is SGN(D+(D=0)), but probably is just as hard to read.

atan(N/D) = 2 atan(N/(D+(1-2*(D<0))*sqrt(N*N+D*D)))

Divide by 2, then tan() to both sides, we get FNF
Find all posts by this user
Quote this message in a reply
11-27-2023, 07:01 AM
Post: #7
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
(11-26-2023 07:41 PM)Albert Chan Wrote:  Yes, some Jacobi variant, because Bij entries is tan(θ/2). Question is why tan(θ/2) work.

No, the Bij entries are tan(θ/4).
The Jacobi formula for determining the Givens rotation is tan(θ/2), and the sign is reversed as well.

Cheers, Werner

41CV†,42S,48GX,49G,DM42,DM41X,17BII,15CE,DM15L,12C,16CE
Find all posts by this user
Quote this message in a reply
11-27-2023, 08:07 PM
Post: #8
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
Hi, Werner

Sorry for the confusion.
I am basing on bij = tan( 1/4 * (2θ = atan(2*aij / (aii - ajj))) )      , i ≠ j, aij ≠ 0

Except edge cases, bij = tan(θ/2)      , |θ/2| ≤ pi/8 ≈ 0.3927

From https://en.wikipedia.org/wiki/Cayley_transform#Examples, this may be why AFH code work.

[Image: 104110a11efbaa15730fbbf044b41db512bf63b9]

LHS matches AFH code of half-angle tan, reversed sign, and zero diagonal.
RHS = Cayley transformed LHS, matches rotation matrix.

Perhaps same idea can be extended from 2x2 to nxn matrix?
Find all posts by this user
Quote this message in a reply
11-27-2023, 08:51 PM
Post: #9
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
Aha! Indeed, that is a first step in the right direction!
Werner

41CV†,42S,48GX,49G,DM42,DM41X,17BII,15CE,DM15L,12C,16CE
Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: 1 Guest(s)