erfi, erfw (w(z)) functions
|
08-22-2020, 04:10 PM
(This post was last modified: 07-21-2021 10:53 AM by Albert Chan.)
Post: #2
|
|||
|
|||
RE: erfi, erfw (w(z)) functions
A mnemonic I find useful
swap -1 and i, and swap the function (erf ↔ erfi, sin ↔ sinh, cos ↔ cosh, tan ↔ tanh) Code: erf (-x) = - erf(x) → erf (ix) = i erfi(x) Update: we could replace i by 1/i, and get a new set of identities cosh(x) = cos(i*x) = cos(-i*x) = cos(x/i) atan(x) = atanh(ix)/i = atanh(-ix)/(-i) = atanh(x/i)*i ... Update2: A better mnemonic maybe to turn function even sin(x)/x = sinh(±i*x)/(±i*x) = 1 − x^2/6 + x^4/120 − ... sinh(x)/x = sin(±i*x)/(±i*x) = 1 + x^2/6 + x^4/120 + ... |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
erfi, erfw (w(z)) functions - salvomic - 11-01-2017, 06:03 PM
RE: erfi, erfw (w(z)) functions - Albert Chan - 08-22-2020 04:10 PM
RE: erfi, erfw (w(z)) functions - Albert Chan - 09-03-2021, 10:39 AM
|
User(s) browsing this thread: 1 Guest(s)