The Museum of HP Calculators

HP Forum Archive 18

 A simple puzzle (no prize offered :-)Message #1 Posted by Gerson W. Barbosa on 7 Jan 2008, 7:46 p.m. Replace every # in the expression below with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (used only once). If you find the correct order you'll obtain .577215664901, that is, the first 12 digits in the Euler-Mascheroni constant. The algebraic object should evaluate correctly on the HP-28/48/49/50, but you can use whatever calculator you like. Actually the approximation yields the constant in excess of about 2E-14, but due to rounding errors the result is not rounded up properly. ```'(.#+EXP(-(EXP(EXP(.#)))))/LN(#)+##^(-#)*LN(#)-EXP(-(#^#/#))/e' (e=2.71828182846) ``` I looked for some approximations at MathWorld but none would fit my purpose, so I created this one. It took me about two or three hours playing on the HP-32Sii and half an hour on the HP-200LX to find the expression, which makes me think the puzzle can be solved in less time just using a trial and error method. If you don't have this much time to waste, writing a short program might be a better solution. Have fun! Gerson. P.S.: The final expression was found on 1/7/8, 06:59:23.4p.m. (local time). (if not true, a close approximation ;-)

 Re: A simple puzzle (no prize offered :-)Message #2 Posted by Paul Dale on 7 Jan 2008, 8:01 p.m.,in response to message #1 by Gerson W. Barbosa I've got it - spoiler warning. From right to left I have: 9365701284 - Pauli

 Re: A simple puzzle (no prize offered :-)Message #3 Posted by Gerson W. Barbosa on 7 Jan 2008, 8:10 p.m.,in response to message #2 by Paul Dale I knew you'd solve it quickly. I should have posted it by midday (local-time), when you'd be sleeping :-) Easier to solve than to make, isn't it? Gerson.

 Re: A simple puzzle (no prize offered :-)Message #4 Posted by Paul Dale on 7 Jan 2008, 8:24 p.m.,in response to message #3 by Gerson W. Barbosa Quote: I knew you'd solve it quickly. I should have posted it by midday (local-time), when you'd be sleeping :-) Possibly. I've been at my computer for going on six hours now :-( Quote:Easier to solve than to make, isn't it? I'd think so. There are only 10! possible solutions but infinite possibilities in the setting. - Pauli

Go back to the main exhibit hall